1. Rectangle $ABCD$ has side lengths $AB = 10$ and $BC = 12$. Let the midpoint of CD be point M. Compute the area of the overlap between \triangle AMB and \triangle ADC.

Solution: We have that the area of $\triangle ADC$ is $\frac{12 \cdot 10}{2} = 60$. The area of $\triangle ADM$ is $\frac{12 \cdot 5}{2} = 30$. Let the intersection of AC and BM be N. Then, we can see that \triangle ABN and \triangle CMN are similar, with ratio $\frac{AB}{CM} = \frac{10}{5} = 2$, so the height of \triangle CMN is $\frac{12}{3} = 4$ and the area of \triangle CMN is $\frac{5\cdot 4}{2} = 10$. Then, the area of the overlap between \triangle AMB and \triangle \angle \angle \angle is $[ADC] - [ADM] - [CMN] = 60 30 - 10 = |20|$

2. Let ω_1 be the incircle of \triangle *ABC* with side lengths $AB = AC = 13$ and $BC = 10$, and let ω_2 be the circle inside \triangle ABC that is externally tangent to ω_1 and tangent to segments AB and AC. Compute the radius of the circle inside \triangle ABC that is externally tangent to ω_1 and ω_2 and tangent to segment AB .

Solution: The radius r_1 of ω_1 is $\frac{[ABC]}{(AB+BC+CA)/2} = \frac{(10.12)/2}{(13+13+19)/2}$ $\frac{(10.12)/2}{(13+13+19)/2} = \frac{10}{3}$. Then, we can note that ω_2 is a dilation of ω_1 centered at A, so the radius r_2 of ω_2 is $\frac{12-20/3}{12} \cdot \frac{10}{3} = \frac{40}{27}$. Let ω_1 and ω_2 be tangent to AB at P_1 and P_2 , respectively. Let the centers of ω_1 and ω_2 be O_1 and O_2 , respectively, and let the center of the circle we are finding the radius of be O_3 . Let the line passing through O_3 parallel to *AB* meet O_1P_1 and O_2P_2 at Q_1 and Q_2 , respectively. Then, $Q_1Q_2 = P_1P_2$. We can find that $AP_1 =$ $12 \cdot \frac{10/3}{5} = 8$ and $AP_2 = 12 \cdot \frac{40/27}{5} = \frac{32}{9}$, so $P_1P_2 = 8 - \frac{32}{9} = \frac{40}{9}$. Denote the radius that we want to compute as r. From right triangle $O_1Q_1O_3$, we have $O_1Q_1 = \frac{10}{3} - r$ and $O_1O_3 = \frac{10}{3} + r$, so $Q_1O_3 = 2\sqrt{10r/3}$. Similarly, $Q_2O_3 = 2 \cdot \sqrt{40r/27}$. Finally, we have

$$
Q_1O_3 + Q_2O_3 = Q_1Q_2
$$

$$
2 \cdot \sqrt{10r/3} + 2 \cdot \sqrt{40r/27} = \frac{40}{9}
$$

$$
\sqrt{r} = \frac{2\sqrt{30}}{15}
$$

$$
r = \boxed{\frac{8}{15}}.
$$

3. Let circles ω_1 and ω_2 be circles with radii 6 and 13, respectively, such that the distance between their centers is 25. A common external tangent touches ω_1 at point P and ω_2 at point Q. A common internal tangent touches ω_1 at point R and ω_2 at point S, and intersects line PQ at point T such that $TP < TQ$. Compute the length of segment TR .

Solution: Denote the intersection of the common external tangent with the other internal tangent as U, and let the centers of ω_1 and ω_2 be O_1 and O_2 , respectively. Let the midpoint of segment O_1O_2 be M. Note that since M is the midpoint of O_1O_2 , and O_1P , O_2Q are perpendicular to PQ, then the line passing through M perpendicular to PQ passes through the midpoint of segment of PQ , which we denote N. Thus, M lies on the perpendicular bisector of segment PQ , so M is equidistant from P and Q .

Next, note that TO_1 bisects $\angle PTR$ and TO_2 bisects $\angle QTS$ by considering that TP, TR are tangent to ω_1 and TQ, TS are tangent to ω_2 . This gives us $O_1TO_2=90^\circ$. We can similarly argue that $O_1 U O_2 = 90^\circ$. Then, $O_1 T U O_2$ is a cyclic quadrilateral with center M . Since P and Q are equidistant from M , we know that the powers of P and Q with respect to $(O_1 T U O_2)$ are equal,

which means $(PT)(PT + TU) = (QU)(QU + UT)$, so we conclude that $PT = QU$. Denote
 $PT = x$. We have $MN = \frac{O_1P + O_2Q}{2} = \frac{19}{2}$ and $PQ = \sqrt{O_1O_2^2 - (O_2Q - O_1P)^2} = \sqrt{25^2 - 7^2} =$

24 so $PN = 12$. Then, $MP = \sqrt{\left(\frac{19}{2}\right)^2 + 12^2}$ and the powe Since we see that $2x < PQ = 24$, the valid solution is $x = 12 - \sqrt{66}$, so $TR = TP = \boxed{12 - \sqrt{66}}$.