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1. Compute  if

Solution: Note that we only need to evaluate  instead of .

Let . By the quotient rule, . Notice that . Then,

.

2. A curve contained in the first quadrant of the -plane originates from  and has the following
property: at each point  on the curve, the segment of the tangent line connecting  to the
intersection of the tangent with the -axis has length .

What is the area of the region bounded by the curve, the -axis, and the -axis?

Solution: First, we compute the equation of the curve. Suppose the curve is the image of . We
see that the tangent line at the point  intersects the -axis at the point .
The distance is then . We therefore have the following equation:

This gives us  (note that the negative sign is necessary in order for the curve to be
in the first quadrant). Therefore, for each , we have  We proceed to
show how this integral can be evaluated.

Standard solution: There are many ways to compute this integral. One way is to make the u-
substitution  and then use partial fraction decomposition (but do be careful that 

). Regardless, the result is . Note that this is a curve that
originates from  and travels left and up, approaching infinity in height as  approaches .

The next step is to integrate  from  to . Note that  The hard part is what
to do with . We will first rewrite this integrand, with some log rules, as

The antiderivative of  is ; evaluating from  to  (with the evaluation at  taken to
mean a limiting action), we get . Finally, there is . Using integration by parts,
we get

But note that , so the entire

antiderivative ends up being
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Evaluating at  and  gets . Putting this all together, the area under the curve is

However, to those who do know double integrals, there is a much quicker solution.

Alternate solution: We seek the value of . Non-negativity of the integrand justifies
Fubini. Switching the order of integration, the integral becomes 

3. Compute

Solution: Let . We quickly find that  and . For , we can find a
recurrence relation:

where  and . By applying integration by
parts, we have

The last term cancels to zero because  at  So, we end up with
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Rearranging, we get  Thus, for even ,  and for odd ,
.

Thus,  . Our final sum is

It is well known that . So, 

 Thus our final sum is 


