1. Let ω be a circle with radius 1. Equilateral triangle $\triangle ABC$ is tangent to ω at the midpoint of side BC and ω lies outside $\triangle ABC$. If line AB is tangent to ω , compute the side length of $\triangle ABC$.

Answer: $\frac{2\sqrt{3}}{3}$

Solution: Let the center of ω be point O and let line AB be tangent to ω at point D. We see that $\triangle ADO$ is a 30-60-90 triangle with OD = 1, so OA = 2. Then, the height of $\triangle ABC$ is 1. We can then compute that half the side length of $\triangle ABC$ is $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$, so the side length of

$$\triangle ABC$$
 is $\boxed{\frac{2\sqrt{3}}{3}}$.

2. Triangle $\triangle ABC$ has side lengths AB = 3, AC = 2 and angle $\angle CBA = 30^{\circ}$. Let the possible lengths of BC be l_1 and l_2 , where $l_2 > l_1$. Compute $\frac{l_2}{l_1}$.

Answer: $\frac{17+3\sqrt{21}}{10}$

Solution: Let $\angle BCA = \theta$. By the Law of Sines, we have $\frac{\sin\theta}{\sin\angle CBA} = \frac{AB}{AC}$, which gives $\sin\theta = \sin(30^\circ) \cdot \frac{3}{2} = \frac{3}{4}$. Let the locations of point *C* corresponding to l_1 and l_2 be C_1 and C_2 , and the resulting measures of $\angle BCA$ be θ_1 and θ_2 . Then, we have $l_2/l_1 = \frac{\sin(180^\circ - \theta_1 - 30^\circ)}{\sin(180^\circ - \theta_2 - 30^\circ)} = \frac{\sin(\theta_1 + 30^\circ)}{\sin(\theta_1 - 30^\circ)}$. Since $\theta_2 = 180^\circ - \theta_1$, we get $l_2/l_1 = \frac{\sin(\theta_1 + 30^\circ)}{\sin(\theta_1 - 30^\circ)}$. We know that $\sin\theta_1 = \frac{3}{4}$, and since θ_1 corresponds to the shorter length of *BC*, we have $\cos\theta_1 = \sqrt{1 - (3/4)^2} = \frac{\sqrt{7}}{4}$. Then,

$$l_2/l_1 = \frac{\sin(\theta_1 + 30^\circ)}{\sin(\theta_1 - 30^\circ)}$$

= $\frac{\sin\theta_1\cos 30^\circ + \cos\theta_1\sin 30^\circ}{\sin\theta_1\cos 30^\circ - \cos\theta_1\sin 30^\circ}$
= $\frac{(3/4)(\sqrt{3}/2) + (\sqrt{7}/4)(1/2)}{(3/4)(\sqrt{3}/2) - (\sqrt{7}/4)(1/2)}$
= $\frac{17 + 3\sqrt{21}}{10}$.

3. Triangle $\triangle ABC$ has side lengths AB = 5, BC = 8, and CA = 7. Let the perpendicular bisector of BC intersect the circumcircle of $\triangle ABC$ at point D on minor arc BC and point E on minor arc AC, and AC at point F. The line parallel to BC passing through F intersects AD at point G and CE at point H. Compute $\frac{[CHF]}{[DGF]}$. (Given a triangle $\triangle ABC$, [ABC] denotes its area.)

Answer: $\frac{10}{21}$

Solution: Note that F is the midpoint of the chord of (ABC) passing through F and parallel to BC. By the Butterfly Theorem, F is also the midpoint of GH. Then, $\frac{[CHF]}{[DGF]}$ is equal to the ratio of the heights of $\triangle CHF$ and $\triangle DGF$. Let the midpoint of BC be M. The height of $\triangle CHF$ is $FM = \frac{1}{2}BC \tan \angle C$ and the height of $\triangle DGF$ is $FD = FM + MD = \frac{1}{2}BC \tan \angle C + \frac{1}{2}BC \tan \angle A/2$ since $\angle MCD = \angle BCD = \angle A/2$.

Using the Law of Cosines on $\triangle ABC$, we have $\cos \angle A = \frac{5^2 + 7^2 - 8^2}{2 \cdot 5 \cdot 7} = \frac{1}{7}$ and $\cos \angle C = \frac{7^2 + 8^2 - 5^2}{2 \cdot 7 \cdot 8} = \frac{11}{14}$. Then, $\tan \angle A/2 = \sqrt{\frac{1-1/7}{1+1/7}} = \frac{\sqrt{3}}{2}$ and $\tan \angle C = \frac{5\sqrt{3}}{11}$.

Our answer is $\frac{FM}{FM+MD} = \frac{5\sqrt{3}/11}{5\sqrt{3}/11+\sqrt{3}/2} = \boxed{\frac{10}{21}}.$