1. Let ω be a circle with radius 1. Equilateral triangle $\triangle A B C$ is tangent to ω at the midpoint of side $B C$ and ω lies outside $\triangle A B C$. If line $A B$ is tangent to ω, compute the side length of $\triangle A B C$.
Answer: $\frac{2 \sqrt{3}}{3}$
Solution: Let the center of ω be point O and let line $A B$ be tangent to ω at point D. We see that $\triangle A D O$ is a 30-60-90 triangle with $O D=1$, so $O A=2$. Then, the height of $\triangle A B C$ is 1. We can then compute that half the side length of $\triangle A B C$ is $\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$, so the side length of $\triangle A B C$ is $\frac{2 \sqrt{3}}{3}$.
2. Triangle $\triangle A B C$ has side lengths $A B=3, A C=2$ and angle $\angle C B A=30^{\circ}$. Let the possible lengths of $B C$ be l_{1} and l_{2}, where $l_{2}>l_{1}$. Compute $\frac{l_{2}}{l_{1}}$.
Answer: $\frac{17+3 \sqrt{21}}{10}$
Solution: Let $\angle B C A=\theta$. By the Law of Sines, we have $\frac{\sin \theta}{\sin \angle C B A}=\frac{A B}{A C}$, which gives $\sin \theta=$ $\sin \left(30^{\circ}\right) \cdot \frac{3}{2}=\frac{3}{4}$. Let the locations of point C corresponding to l_{1} and l_{2} be C_{1} and C_{2}, and the resulting measures of $\angle B C A$ be θ_{1} and θ_{2}. Then, we have $l_{2} / l_{1}=\frac{\sin \left(180^{\circ}-\theta_{1}-30^{\circ}\right)}{\sin \left(180^{\circ}-\theta_{2}-30^{\circ}\right)}=\frac{\sin \left(\theta_{1}+30^{\circ}\right)}{\sin \left(\theta_{1}-30^{\circ}\right)}$. Since $\theta_{2}=180^{\circ}-\theta_{1}$, we get $l_{2} / l_{1}=\frac{\sin \left(\theta_{1}+30^{\circ}\right)}{\sin \left(\theta_{1}-30^{\circ}\right)}$. We know that $\sin \theta_{1}=\frac{3}{4}$, and since θ_{1} corresponds to the shorter length of $B C$, we have $\cos \theta_{1}=\sqrt{1-(3 / 4)^{2}}=\frac{\sqrt{7}}{4}$. Then,

$$
\begin{aligned}
l_{2} / l_{1} & =\frac{\sin \left(\theta_{1}+30^{\circ}\right)}{\sin \left(\theta_{1}-30^{\circ}\right)} \\
& =\frac{\sin \theta_{1} \cos 30^{\circ}+\cos \theta_{1} \sin 30^{\circ}}{\sin \theta_{1} \cos 30^{\circ}-\cos \theta_{1} \sin 30^{\circ}} \\
& =\frac{(3 / 4)(\sqrt{3} / 2)+(\sqrt{7} / 4)(1 / 2)}{(3 / 4)(\sqrt{3} / 2)-(\sqrt{7} / 4)(1 / 2)} \\
& =\frac{17+3 \sqrt{21}}{10}
\end{aligned}
$$

3. Triangle $\triangle A B C$ has side lengths $A B=5, B C=8$, and $C A=7$. Let the perpendicular bisector of $B C$ intersect the circumcircle of $\triangle A B C$ at point D on minor arc $B C$ and point E on minor $\operatorname{arc} A C$, and $A C$ at point F. The line parallel to $B C$ passing through F intersects $A D$ at point G and $C E$ at point H. Compute $\frac{[C H F]}{[D G F]}$. (Given a triangle $\triangle A B C,[A B C]$ denotes its area.)
Answer: $\frac{10}{21}$
Solution: Note that F is the midpoint of the chord of $(A B C)$ passing through F and parallel to $B C$. By the Butterfly Theorem, F is also the midpoint of $G H$. Then, $\frac{[C H F]}{[D G F]}$ is equal to the ratio of the heights of $\triangle C H F$ and $\triangle D G F$. Let the midpoint of $B C$ be M. The height of $\triangle C H F$ is $F M=\frac{1}{2} B C \tan \angle C$ and the height of $\triangle D G F$ is $F D=F M+M D=$ $\frac{1}{2} B C \tan \angle C+\frac{1}{2} B C \tan \angle A / 2$ since $\angle M C D=\angle B C D=\angle A / 2$.
Using the Law of Cosines on $\triangle A B C$, we have $\cos \angle A=\frac{5^{2}+7^{2}-8^{2}}{2 \cdot 5 \cdot 7}=\frac{1}{7}$ and $\cos \angle C=\frac{7^{2}+8^{2}-5^{2}}{2 \cdot 7 \cdot 8}=$ $\frac{11}{14}$. Then, $\tan \angle A / 2=\sqrt{\frac{1-1 / 7}{1+1 / 7}}=\frac{\sqrt{3}}{2}$ and $\tan \angle C=\frac{5 \sqrt{3}}{11}$.
Our answer is $\frac{F M}{F M+M D}=\frac{5 \sqrt{3} / 11}{5 \sqrt{3} / 11+\sqrt{3} / 2}=\frac{10}{21}$.
