1. Compute the area of the polygon formed by connecting the roots of

$$
x^{10}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{2}+x+1
$$

graphed in the complex plane with line segments in counterclockwise order.
Answer: $1+\sqrt{3}$
Solution: Note that the polynomial can be factored as $\frac{x^{3}-1}{x-1} \cdot \frac{x^{12}-1}{x^{4}-1}$. We can find the roots of polynomial by taking the roots of $\left(x^{3}-1\right)\left(x^{12}-1\right)$ and removing the roots of $(x-1)\left(x^{4}-1\right)$. This gives us $e^{i \pi / 6}, e^{i \pi / 3}, e^{i 2 \pi / 3}, e^{i 5 \pi / 6}, e^{i 7 \pi / 6}, e^{i 4 \pi / 3}, e^{i 5 \pi / 3}, e^{i 11 \pi / 6}$ as the roots. Note that the resulting polynomial consists of four isosceles triangles with sides of length 1 around an angle of 30° and four isosceles triangles with sides of length 1 around an angle of 60°. The total area of these triangles using the Law of Sines is $4 \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin 30^{\circ}+4 \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin 60^{\circ}=1+\sqrt{3}$.
2. $f(x)$ is a nonconstant polynomial. Given that $f(f(x))+f(x)=f(x)^{2}$, compute $f(3)$.

Answer: 6
Solution: We use LHS to refer to the left hand side of the equation and RHS to refer to the right hand side. Let the degree of f be k. If $k \geq 2$, LHS has degree k^{2} and RHS has degree $2 k$, with equality only at $k=2$. Thus, the degree is 2 .
Let $f(x)=a x^{2}+b x+c$. The LHS coefficient of x^{4} is a^{3}, while the RHS coefficient of x^{4} is a^{2}; equality gives $a=1$. So $f(x)=x^{2}+b x+c$. In addition, note that $f(x)$ divides $f(x)^{2}-f(x)=f(f(x))=f(x)^{2}+b f(x)+c$, forcing $c=0$.
Now, the condition given in the problem becomes $f(x)^{2}+b f(x)+f(x)=f(x)^{2} \rightarrow b=-1$. Hence, $f(x)=x^{2}-x$, and $f(3)=6$.
3. Let $f(x)=x^{3}-6 x^{2}+\frac{25}{2} x-7$. There is an interval $[a, b]$ such that for any real number x, the sequence $x, f(x), f(f(x)), \cdots$ is bounded (i.e., has a lower and upper bound) if and only if $x \in[a, b]$. Compute $(a-b)^{2}$.
Answer: 2
Solution: Note that $f(x)-x$ can be factored as $(x-2)\left((x-2)^{2}-\frac{1}{2}\right)$, so in particular, $2 \in[a, b]$ (since $f(2)-2=0 \rightarrow 2=f(2)=f(f(2))=\cdots)$.
For any x, write $x=2+\delta$. Then, $f(x)-2=(x-2)\left((x-2)^{2}-\frac{1}{2}\right)+x-2=\delta\left(\delta^{2}-\frac{1}{2}\right)+\delta=\delta\left(\delta^{2}+\frac{1}{2}\right)$. If $|\delta|>\frac{1}{\sqrt{2}}$, then $|f(x)-2|>|\delta| c$ for some $c>1$, and repeating this process (setting $f(x)=2+\delta^{\prime}$ with $\left.\left|\delta^{\prime}\right|>|\delta| c\right)$ shows divergence. Conversely, if $|\delta|<\frac{1}{\sqrt{2}}$, the factor c is smaller than 1 . Since we are given that the converging set is closed, it follows that $[a, b]=2 \pm \frac{1}{\sqrt{2}}$ and hence $a-b=\sqrt{2} \rightarrow(a-b)^{2}=2$.

